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The rippling instability of a liquid sheet
was first observed by Debr_geas, de Gennes, and

: Brochard-Wyart [Scienc e 279 , !.704 (1998)] on
a hemispherical bubble resting on a free sur-
face. Unlike a soap bubble, it =collapses under its

own weight while bursting, and folds into a wavy
structure which breaks the original axisymmetry.
In fact, this effect occurs for both purely elastic

and purely viscous (liquid) sheets, and an analogy
can be made between the two mechanisms. We

present a theory for the onset of the instability

in both cases, in which the growth of the cor-
rugation out of an inextensible initial condition

is governed by the competition between gravita-
tional and bending (shearing) forces. The insta-
bility occurs for a range of densities, stiffnesses
(viscosities), and sizes, a result which arises less
from dynamics than from geometry, suggesting a
wide validity. We further obtain a quantitative

expression for the number of ripples. Finally, we
present the results of experiments, which are con-
sistent with our predictions.

Every day, nature surprises us with structures

and patterns of such beauty as to fill the scientist

with wonder and the artist with envy. In the present

paper, we address an instability which turns a uni-

form, smooth, liquid bubble into a striking wrin-

kled structure. The rippling of a deflating bubble

was first observed by Debr_geas, de Gennes, and

Brochard-Wyart [1]. In their experiment, 0.1 to 10
cm 3 of air injected in a highly viscous liquid (rj _ 103

Pa-s) rises to the free surface, imprisoned in a hemi-

spherical bubble of thickness e -.- i - 10 pm. If the

latter is perforated at its apex by a needle, a circular

opening expands exponentially at first. After about

30 ms, the retraction slows down to a steady state.

In the meantime, the air flow through the hole equi-

librates the pressure difference, allowing the bubble

to collapse under its own weight. As it deflates, an
instability appears: the fluid sheet folds into a wavy

structure, with radial ripples that break the original

axisymmetry. In the absence of a detailed theory,

Ref. [1] proposes a scaling estimate for the number

of ripples n* ._ (pgR3/K) 1/2, where # is the mass

of the film per unit area, g the gravitational acceler-

ation, R the radius of the hole, and K the effective

bending rigidity of the sheet which was assumed to

be elastic during the early stages of the rippling. Vis-

cous flows eventually cause the corrugation to decay,
as the hole retracts towards the thicker edge of the

bubble.

The rippling results from the competition be-

tween compression, bending, and gravity. Each fluid

element tends to fall under its own weight, but expe-

riences a viscous resistance from its neighborhood. If

the bubble were to collapse in a uniform, symmetric

way, it would occupy a progressively reduced area,

leading to an in-plane compression which would re-

quire forces that far exceed the scale set by gravity.
Instead, the film deforms in a nearly inextensional

fashion by undergoing pure bending almost every-
where. In terms of dynamics, this argument may be

restated as follows; for a given (gravitational) force,

the relative time scale associated with stretching is

much larger than that for bending, and the surface

therefore prefers to corrugate on short times, be-

fore eventually relaxing into a uniform, thicker mem-
brane. We note that this is valid only for creeping

flows; the instability does not occur in the bursting

of low viscosity films such as soap bubbles, owing to

the rapidity of the retraction.

This instability is reminiscent of buckling phe-

nomena in slender elastic bodies [2]. In fact, creep-

ing flows of liquid filaments and sheets may also lead

to buckling (a striking everyday example being the

coiling of a stream of honey when it reaches a toast

[3,4]), an analogy we shall elucidate and exploit. For
an elastic rod, buckling occurs at the longest possi-

ble wavelength in order to minimize the bending en-

ergy. In the bubble problem, however, gravity plays
a distinctive role in determining the configuration.

Though bending still favors large scale deformations,

the gravitational energy is minimized for an almost

flat sheet with as many tiny ripples as possible, and

the optimal wavelength results from a compromise
between the two.

The rippling instability corresponds to the

growth of the most favorable perturbation, trans-

forming an axisymmetric initial condition into a cor-

rugated pattern of a given wavelength. Although
the bubble has the geometry of a sphere before col-

lapsing, it is quite flattened by the time the ripples

appear. For simplicity, we consider the unperturbed

configuration to be a shallow cone, of slope a << 1,
described by its height above the surface,

h--a(po - p), (1)



where p is the cylindrical radial coordinate and Po

the radius of the base (Fig. l(a)). As a further

simplification, we do not incorporate the full burst-

ing dynamics and corresponding viscous flows in our

analysis, but carry it out with a specific hole size,

which enters the theory as a parameter R. Once
the hole grows steadily, the rate of retraction of the

liquid film is given by the balance of viscous stress

and surface tension Ca _ 20 mN/m), resulting in
a constant velocity v .-_ a/_. It thus takes a time

r -.- rle/a for the opening radius to increase by e. In

this time, the liquid acquires a velocity V -,. gr due

to gravity, larger than v by a factor V]v ._ l0 T. Even
if the liquid is viscoelastic, so that the retraction ve-

locity is enhanced by a factor R/e (_ 10 - 104) [5,1],
the hole radius remains essentially constant while
the instability occurs.

To allow for the rippling of the surface, we

perturb our truncated cone, without any loss of gen-
erality, as

h + (fh = a (po - p) - (in (p)

+ (p)cos(no), (2)
->I

where 8 is the azimuthal angle. In the case of a

thin elastic sheet loaded by its own weight, the two

primary modes of deformation are in-plane stretch-
ing and out-of-plane bending. If the scale of the

deformation is of O (l), the bending forces are pro-

portional to ye3fl, while the stretching forces are

proportional to Yel [6]. Their ratio scales as (e/l) 2,
so that for a given external force, here due to grav-

ity, inextensional deformations are greatly preferred.

For a thin, very viscous sheet, the primary modes of

deformation are also bending and stretching (shear-
ing) ones. Here however, the forces result from ve-

locity gradients in the sheet. For deformations (of
the bubble) of O (/), the ratio of the viscous forces

[7,8] due to bending, (_e3/l 2) dl/dt, to those asso-

ciated with stretching, 07e)dl/dt, is (e/l) 2, as be-
fore, largely favoring inextensional deformations if

e << l _ po/n'. (This condition is satisfied if the

selected number of ripples n" is small compared to
103 , which is the case as we shall see later). Equiva-

lently, for a given loading, the time scale correspond-

ing to bendin_ is smaller than that for stretching by
a factor (e/l) . Thus, at the onset of the instability
we may neglect perturbations that involve stretch-
ing, both for the elastic and the viscous sheet. More

specifically, we require (i) a vanishing Gauss curva-

ture [9], leading to a developable surface, so that

_a (p) = 5a x (c - p), &,B,, (p) = _/3,,, x p (3)

(where _a, 5ft.,and care constants);(it]no in-plane
strains[9],yielding

(1 --I-n 2) (5_,_)_ = 4c_5a. (4)

The perturbation thus consists of an axisymmetric

flattening (-Sa) along with ripples of magnitude
(f_3_, analogous to the deformation of a tablecloth

draping a circular table (Fig. l(b)). We note that

the inextensibility condition constrains the ripples to

decrease in magnitude upon approaching the open-
ing, in agreement with experimental observations.

(The linear dependence of 5a and 5fl,_ on p, though,
remains to be checked.)

To complete the characterization of the prob-
lem, we have to specify boundary conditions for 5h.

As the bubble rests on a liquid substrate, its edge

cannot sink, so that ¢ih (p = Po) = 0. Clearly, this

cannot be satisfied by the simple ansatz of Eq. (3),
but requires one involving both bending and stretch-

ing. However, this stretching is restricted to a small

region near the edge [6,10], so that the inextensional

assumption holds in the bulk, along with Eqs. (3)
and (4). Although the condition (ih (p = Po) -- 0 is

not compatible with Eq. (3), it is best approached

by the choice c = po, which also minimizes the grav-
itational potential energy.

In what follows we consider the elastic case
first and then transpose our results to the viscous

case. For inextensional elastic deformations, the en-
ergy functional reads

E[h + (ih] = f d(surface)(gravitational energy
Jb ubble

+ bending energy)

/:o/?= pdp d8_/1 + [V[h + 5h)] 2

#9(h + 5h) + K[V_(h + 5h)]_}. (5){

Here K = Ye3/12 (1 - v _) is the effective rigidity,
where Y is the Young modulus and v the Poisson

ratio. On substituting Eqs. (2-4) into Eq. (5) we
obtain, to lowest order in the perturbation,

_E =_E[h + 5h] - E[h]
7r Po

n>l

+ [1 -- _Rs¢(_)]n = + n 4}

- (6)
n_l

where

E =In , and
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frodpp(po- p)
R3In(po/R)

z__l

In(po/R)
(7)

Here, we have used Eq. (4) to eliminate _, and

the result is valid when (_j3,) 2 ... a6a <:< a <<_ 1.

?-1/3 is an intrinsic length scale, arising from the

competiton between gravity and bending elasticity.

Each mode contributes an amount _E,, to the

change in energy, and rippling occurs if _En < 0 for

some integer. In general, _E,, < 0 for a range of dif-

ferent n's; the most negative variation corresponds

to the maximally growing perturbation, and thus

sets the wavelength of the instability. From Eqs. (6)

and (7), we see that the instability is unexpect-

edly suppressed when ? < % = R_ 2 (P0- Rm) -z.

Here, Rm maximizes Rs¢ (po/R), and is calculated

from (p0 - Rm) In (po/Rm) = Rrn¢ (po/Rm). Fur-

thermore, for a given bubble size P0, rippling does

not appear as long as R < Re (_, K, po), where Re is

defined by Rc3¢ (po/Rc) = ?-1. Azimuthal continu-

ity near a small hole translates into short wavelength

deformations, associated with a high (bending) cost.

Equivalently, if R < 7 -1/3, one expects deforma-

tions close to the hole to be forbiddingly expensive.

Finally, the onset of rippling also depends on the ra-

tio po/R (as seen from the implicit definition of Re).

This is related to the fact that the wavelength of the

deformation close to the hole is R/po times smaller

than at the base, implying a bending cost (po/R) 2

times larger, while the gain in gravitational poten-

tial energy is proportional to (P0 R). Minimizing

8E in Eq. (6) yields the number of ripples as

(s)'

where Int{x} is the integer closest to x. This rela-

tion improves on the estimate of Ref. [1], where the
authors consider the short time elastic behavior, and

establishes its domain of validity.

The above calculation amounts to a linear sta-

bility analysis involving the forces F = "_E/_h de-

rived from the energy functional of Eq. (5). This
balance of forces for the elastic sheet differs from

the equations of motion of the viscous sheet only in

that the elastic modulus Y is replaced by the viscos-

ity r] and the height h is replaced by the transverse

velocity dh/dt of the sheet [8]. Indeed, for short

times after the viscous bubble begins to collapse, this
can be obtained by integrating the Stokes equations

through the thickness [11,8]. Using such a proce-

dure, one can write the viscous resistance to bending

_e 3 d(curvature}

as 4(l_vZ ) dt [8], SO that the effective bend-

ing modulus of a liquid sheet is K = Kt = r/ea/3r

(v = 1/2 for an incompressible medium), where r

is a timescale associated with the falling velocity.

Thus, all the conclusions of the stability analysis for

the elastic sheet, and in particular the expression

for the number of ripples (Eq. (8)), may be trans-

posed to the case of the bubble modulo a certain

time scale related to the gravity-induced velocity of

the fluid. Comparing the nascent ripples' amplitude

to the film thickness yields an estimate of this time
scale as (e/g) 112. However, as the bubble continues

to fall, this time scale may vary and so may the num-

ber of ripples. This last possibility is unlikely owing

to the large forces required to introduce new ripples

or remove existing ones.

In order to check our results against experi-

ment, we visualized the bursting of silicone oil bub-

bles. Once the bubble is punctured with a sharp

needle, its evolution is followed using a high-speed

camera capable of recording up to 1000 frames per

second. The resulting video is then analyzed to de-

termine the radius P0 of the bubble, the hole size R

at which the ripples are first observed, along with the

number of ripples n °. As mentioned above, the hole

expands very fast at first; by the time the pressure

difference has equilibrated and the bubble begins to

collapse, R is much larger than Re. In order to com-

pare the experiments with the theory, in which R

enters as a parameter, the latter is measured at the

onset of the instability for each given size of the bub-

ble. In Fig. 2, we plot n" as a function of Po, which

compares well with the theoretically predicted curve.
Furthermore, the critical dependence of the rippling

on the radius Po is qualitatively confirmed by the
experiments which showed a supression of the insta-

bility for small bubbles.

We conclude with a discussion of possible re-
finements of the theory and their relation to the ge-

ometric nature of the problem. A more complete

theory would incorporate a (flattened) hemisphere

as the initial condition, rather than a cone. Also,

while we argued that the inevitable stretching is lim-

ited to a negligible region, we have assumed that the

latter is relegated to the lower edge of the bubble,
disregarding the fact that the liquid is progressively

drained out of the film by gravity so that the sheet
is thinner around the hole and therefore more exten-

sible (but also even more flexible) at the top than at

the bottom. Though we expect, given the boundary

conditions, that the stretching occurs quite generally

near the base, improvements on the theory would

be accompanied by the choice of more complicated
ansatzes in Eqs. (1) and (2), and include a variable

thickness e (p); the corresponding calculations will



bereportedelsewhereIll]. Yet,thestronggeomet-
ricalconstraintsinvolvedin theproblemaresugges-
tiveofthero.bustnessoftheresults.Thequestionwe
haveansweredis akinto that ofapplyinga curved
surfaceuntoa flat onein themosteconomicalway,
a problemwhichhastaxedcartographersfor many
centuriesandliesat thebirthof differentialgeom-
etry. It is alsosomewhatof aninversecounterpart
to theproblemof fitting aflat sheetto a threedi-
mensionallandscape,whichhasbeenstudiedin var-
iouscontexts[12-15],andisanissuethatstill vexes
fashiondesigners.Therelevanceof thegeometrical
constraintsis manifest,for example,in thestrong
dependenceof theripplingonthesizeof theopen-
ing,whichiscloselyrelatedtoawell-knowntheorem
dueto Gauss[16],Jellett[17],andothers,accord-
ingto which(looselyput)aclosedsurfacecannotbe
bentwithoutbeingstretched,whileanopensurface
canbebentinextensionally.Similarly,wefindthat
asmallerholeimpliesarelativelystifferbubble,and
hamperstherippling.Whilethedetailedformofthe
functions_oand¢ arisefromthephysicalconstraints
anddynamicsimposedbythetheenergyfunctional
(or forces)andthevariousboundaryconditions,the
essenceis in thegeometry.
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FIG. 1. Stroboscopic images of a collapsing liquid
bubble of size is Po = lmm and thickness e _ 100/_m.
The silicone oil has viscosity _/= 103Pa.s, surface tension
cr= 21raN/m, and mass density 0.98g/cm 3. (a) 30ms af-
ter the film is punctured by a sharp needle, the bubble
shows a retracting hole of radius R -- 1.4ram at its apex,
but no ripples yet. (b) 30ms later, the bubble loses its
axisymmetric shape. The radius of the hole remains es-
sentially constant, at R = 1.6ram, while the ripples grow.
(The decrease in amplitude upon approaching the hole
is noticeable.) The inset displays a schematic side view
of the essentially conical deflating bubble at the onset of
the instability, with the important quantities involved in
the phenomenon. The extreme shallowness allows for a
perturbative treatment in the slope a of the cone.
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FIG. 2. Plot of the number of ripples n" as a func-

tion of the bubble radius Po, comparing the experimental
measures (points) with the theoretical prediction (solid

line). These data were gathered using solicone oil of vis-

cosity r/= 600Pa. s and bubbles of thickness e _ 30#m.

The errors in the measurement of po arise from menis-

cus effects which are more important in smaller bubbles.

The bursting time elapsed up to rippling is measured to

be of order of 1 to 5 times (e/g) 1/2, consistent with our

proposed mechanism for the formation of the corruga-

tion. For each experimental realization, the ratio po/R

was measured at the onset of the instability, and the

corresponding dependence of R on po was used to get

a theoretical curve n" = n ° (po). The latter is plotted

here for a slope a _ 3°(_ 0.05tad) of the cone, consis-

tent with our perturbative treatment, and in agreement

with direct observation. The dashed line represents the

best fit of the scaling form n ° ,-, (#gR3/g)1/2 [1], where

R is chosen as the relevant length scale. If R is replaced

by po, the above expression for n* may be closely fitted

(up to an overall multiplicative factor) to our predicted

curve, showing that the size of the bubble is the domi-

nant length scale within the present experimental range

and conditions. _Ve also note that the predictions com-

pare best with the experimental data for larger bubbles

(e/po <<: 1), for which an inextensible model is better

suited. The inset shows a top view of the fully devel-

oped ripples, from which n ° is measured.
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